
R O B O C E K P R O J E C T D E V E L O P E R S

A C T U AT O R , R O B O T I C S
W I T H A R D U I N O

R O B O C E K 2 0 2 0 - 2 1



Copyright © 2022 ROBOCEK Project Developers

published by robocek 2020-21

robocek.org

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an “as is” basis, without warranties or conditions of any kind, either express or implied. See
the License for the specific language governing permissions and limitations under the License.

First printing, January 2022

http://www.apache.org/licenses/LICENSE-2.0


3

There are an endless number of things to discover about robotics.
A lot of it is just too fantastic for people to believe.

-Daniel H. Wilson



Acknowledgment

A great deal of time and effort have been put forward to compile this book with relevant topics. Thank

God almighty for providing all the necessary resources and facility through our colleagues, friends, faculty

members who have helped us in every possible way to compile this book. We thank ROBOCEK Execom

2020-21 for providing us the opportunity in writing this book. We would extent our sincere gratitude to

ROBOCEK Execom members and ROBOCEK alumni for their support and suggestions. Last, but not the

least, we thank our family members and friends for their support throughout this journey. We also thank all

other authors and developers whose work have given us the inspiration and guidance to compile this book.

We thank Arduino Community, tinkerCad, LastMinuteEngineering, stackOverflow, Overleaf and all other

services, who have provided excellent articles, blogs and resources in building this book.



Preface

This is a compilation for the pioneers into the stream of Robotics. Robotics is believed to have the potential to

positively transform lives and work practices, raise efficiency and safety levels and provide enhanced levels of

service. Even more, robotics is set to become the driving technology nurturing a whole new generation of

autonomous devices and cognitive artefacts that, through their learning capabilities, interact seamlessly with

the world around them, and hence, provide the missing link between the digital and physical world. The era

has advanced so much that the neural networks escalate their accuracy to prove that they replicate human

thought processes. There it becomes necessary for an engineer to engineer robots.

It is undeniable that a good technical book is a great source of knowledge and an effective tool to foster

the real aspects of engineering into the students. Bearing this in mind, in order to make the first step of

beginners a little more easy and grounded we bring this compilations of ours to light. For most of the

novels into robotics, Arduino might be the entry point. This material focuses on Arduino right from its base,

Programming Arduino with C, and interfacing ideas of several basic modules. Traversing through each and

every journal and books that might equip us to get this done has really added up to our knowledge. We were

able to correct many of our notions and make a journey through many concepts really worth understanding

being technical aspirants. Taking another perspective we have recognized the importance of dedication,

patience and commitment that we should cultivate to improve ourselves relentlessly.



6

ACTUATOR : ROBOTICS WITH ARDUINO

With love

Edwin Jose George Meghana T.V
edwinjosegeorge@gmail.com meghanathemmanamveedu@gmail.com

ROBOCEK Execom member (2020-21) ROBOCEK Execom member (2020-21)
Department of Computer Science and Engineering Department of Computer Science and Engineering

Govt. College of Engineering Kannur (2018-22) Govt. College of Engineering Kannur (2018-22)



7

For the pioneers into robotics with Arduino...



Contents

1 The ROBOCEK Family 13

2 Introduction to Robotics 17

3 Introduction to Arduino 19

4 Programming Arduino with C 29

5 Motor Driver 43

6 Interfacing IR sensors 50

7 Interfacing UltraSonic sensors 59

8 Interfacing DTMF 68



List of Figures

3.1 Arduino Open Source Community 19

3.2 Development boards 20

3.3 Processor and Micro-Controllers 21

3.4 Arduino Boards 22

3.5 Arduino Uno version 22

3.6 Arduino Uno R3 Pinout 23

3.7 Digital signals 26

3.8 Analog signals 26

3.9 Pulse width Modulation 27

3.10 Arduino Uno Data-sheet 28

4.1 Arduino IDE 30

4.2 Parts of Integrated Development Environment (IDE) 30

4.3 block coding 31

4.4 Led Blinking circuit 39

4.5 Button configuration 40

4.6 Push button circuit 40

4.7 Potentiometer circuit 41

4.8 LED fading circuit 42

5.1 L298N Motor driver 43

5.2 L298N PinOut 44

5.3 Interfacing Motor driver with Arduino 45

5.4 PWM supported wheel control 48

6.1 Infrared Spectrum 50

6.2 Behaviour of Infra-Red (IR) Sensor 51

6.3 Working of IR sensor 51

6.4 FC-51 IR Sensor board 52

6.5 Infra-Red (IR) sensor board description 53

6.6 Interfacing Infra-Red (IR) with Arduino 54

6.7 Infra-Red (IR) Array 55

6.8 Line follower - bot and path 55

6.9 Line Follower Sensor 55



10

6.10 Infra-Red (IR) Line follower Circuit 56

6.11 Line follower maze 58

7.1 The Ultrasonic Spectrum 59

7.2 HC-SR04 Ultrasonic Sensor 60

7.3 HC-SR04 Pinout 60

7.4 Ultrasonic - Working 61

7.5 Ultrasonic Sensor with Arduino 63

7.6 Obstacle Avoider Bot 64

7.7 Obstacle Avoider Circuit 65

7.8 Object Avoider Bots 67

8.1 DTMF Module 68

8.2 Decimal to binary 71

8.3 MT8870 DTMF decoder 72

8.4 DTMF with Arduino 73

8.5 Wireless bot using DTMF 74



List of Tables

3.1 Microprocessors VS Micro-controllers 21

3.2 ATmega328 spec 24

3.3 ADC v/s PWM 27

4.1 Datatypes in C 32

4.2 Arithmetic Operators 34

4.3 Comparison Operators 34

4.4 Logical Operators 34

4.5 Analog to Digital mapping 37

4.6 Digital to Analog Mapping 37

5.1 Wheel potential difference 45

5.2 Bot movement 47

5.3 Voltage at motors 49

6.1 Inverted and Non-inverted IR boards 53

6.2 Line follower movement 56

7.1 Obstacle Avoider Motion 64

8.1 Keypad frequency 69

8.2 Decimal Number system 69

8.3 Binary system 70

8.4 Memory size 70

8.5 Binary to decimal 71

8.6 DTMF pattern 72



Acronyms

ADC Analog to Digital Conversion

AI Artificial Intelligence

DTMF Dual Tone Multi Frequncy

EMR Electro Magnetic Radiation

IC Integrated Circuits

ICSP In-Circuit Serial Programing

IDE Integrated Development Environment

IoT Internet of Things

IR Infra-Red

LDR Light Dependent Resistor

PIR Passive Infrared

PWM Pulse With Modulation

SBC Single Board Computer

SoC System on Chip



1
The ROBOCEK Family

1.1 Vision

To devise a passionate community of strong responsible engineers
technically skilled enough to figure out the need of the hour and act
wisely to crack the challenges emphasizing the universal values.

1.2 Mission

To foster young minds into the ever evolving realm of robotics fabri-
cating an ample learning environment aiding in design, operation and
robotics with the aid of hands-on projects and collaborations with the
experienced.

1.3 Values

Strives to excel as a learning community by adapting, learning and
relentlessly improving ourselves and the entire team by promoting
initiatives devising healthy, ethical and social relations adhering to
sustainable models of development.

1.4 Down the Memory Lane

A vibrant team of young enthusiasts from Govt. College of Engineering
Kannur inspired from a group of students from Chennai, fabricated a
small team with one dream to excel in the field of robotics. They named
it ’Robotic Enthusiasts Of GCEK’. They hanged on to their dream of
a robotics club for GCEK till it attained its official recognition on 30th

January, 2014.
ROBOCEK gradually evolved from a handful of members with no

background in robotics into one of the most highly acclaimed robotics
club in Kerala with a dedicated team and unmatched performance. The



actuator, robotics with arduino 14

hardcore activities were accomplished by the students who organised
themselves into an Executive Committee with prominent guidance from
the Staff Advisors. They realised the dream of a room dedicated to
ROBOCEK in GCEK. They conceived the idea of a basic workshop that
would pave a path into the realm of robotics under ROBOCEK and
finally converged to ’ACTUATOR’,The Beginner’s Workshop. Bit by bit
’Actuator’ turned to be the first and the most interesting workshop that
waved among the freshers of GCEK and also any entry point into the
ROBOCEK. The pioneers into the club slowly engaged themselves into
learning in groups.

The dedicated cluster of students strived to explore the intangi-
ble sphere of robotics through workshops, competitions, collaborative
learning and expeditions nurturing academic excellence striving to
keep in pace with electronics and robotics. The team endeavoured
various tech fests, including national level fest - Xplore’19 and social
relevant projects like expo’s,flood relief activities, workshops etc.

1.5 ROBOCEK Execom



actuator, robotics with arduino 15

It’s always been a proud moment to see an enthusiastic team that
shape the progress of our club. Starting from 2014, Dr T D John, then
Principal GCE Kannur laid the foundation for the robotics club for the
first time. Led by Sreepathi A (Batch 2k13-2k17) and Jayakrishnan M
(Batch 2k13-2k17), striving through initial and difficult times, along
with support from faculties especially Dr Abdul Nazar K P, Dr A
Ranjith Ram, paved a better way to the future generation of the college
to invest their interest and passion in innovative technology. With rising
demand for betterment, an excellent team of enthusiastic students were
chosen to drive ROBOCEK, ’The Robocek Execom’, meeting the vision and
mission of the club. Though led by a team, each and every innovation
are always welcomed, helping the students to advance their career. Our
courage to advance is from the everlasting support from ROBOCEK
Alumni, providing examples for aspirants.



actuator, robotics with arduino 16

1.6 Reach out to us

� https://robocek.org

# robocek@gcek.ac.in
§ https://github.com/robocek

ï https://www.linkedin.com/company/robocek

� https://www.facebook.com/robocek

Ð https://www.instagram.com/robocek_official

Æ https://www.youtube.com/ROBOCEK

https://robocek.org
mailto: robocek@gcek.ac.in
https://github.com/robocek
https://www.linkedin.com/company/robocek
https://www.facebook.com/robocek
https://www.instagram.com/robocek_official
https://www.youtube.com/ROBOCEK


2
Introduction to Robotics

2.1 What is Robotics?

Robotics is an interdisciplinary field that integrates Computer Science
and Engineering. It comprises design, construction, operation and use
of robots. The field targets the creation of machines that can help and
assist humans through blending aspects of mechanical engineering,
electrical engineering, mechatronics, electronics etc

A Robot is an interactive machine capable of carrying out a complex
series of actions automatically, especially one programmable by a com-
puter, to reduce human risk in hazardous works. Thus, robotics is an
interdisciplinary branch of engineering and science that deals with the
design, construction, operation, and use of robots, as well as computer
systems for their control, sensory feedback, and information processing
to create an efficient robot. A robot can be thought as an combination
of sensors, controllers and actuators. Sensor provide collection of in-
formation from environment, that are processed by controllers who
generate signal to actuators to interact with environment.

Robots are put to use in different applications. Their usage is deter-
mined by the field they concentrate on. Robotics is a vast field. They
may be manufactured or processed in different forms, shapes and util-
ity. Joseph Engelberger, godfather of robotics, once said “I can’t define a
robot, but I know one when I see one.”

2.2 Evolution of Robotics

The question of evolution of robotics take us to the ancient world and
era of industrial revolution. Engineers were trying to develop machines
that can handle dangerous tasks for automotive industry and defence.
Robots they developed were meant to be a replica of human actions.



actuator, robotics with arduino 18

Major Events in the Evolution of Robotics

Further advancements in the technical sphere since the 2000’s have
led to more advanced automation and innovation. The improvements
in the fields of Machine Learning and Artificial Intelligence (AI) again
paves great milestones in the evolution of robotics. Automated ma-
chines have turned to be common comrades in industries like manufac-
turing, maritime explorations, military, agri-technologies.AI is utilized
to assess environments and act according to the programmed goals.
Recent developments have also led to the use of these technologies in
data and predictive analytics to improve the customer satisfaction. The
developments in this realm is certainly going to rule the pulse of the
impending technical world.



3
Introduction to Arduino

Arduino is it one of the most widely used micro-controller to develop
various DIY projects. The low cost and easy to deploy has given rise
to various Internet of Things (IoT) and embedded projects. Arduino
is an open source electronics platform based on easy-to-use hardware
and software. Usually the term “Arduino” can be used to refer the
following.

• Open Source Electronics Platform : Free to design and implement
various units, easy availability and high customization.

• Arduino Integrated Development Environment (IDE) : A software to
program Arduino boards.

• Online Arduino Community : Fast growing community who main-
tains and supports Arduino Developments.
https://github.com/arduino/ https://www.arduino.cc/

The Arduino project was started in 2005 as a program for students
at the Interaction Design Institute Ivrea in Ivrea, Italy , aiming to
provide a low-cost and easy way for novices and professionals to create
devices that interact with their environment using sensors and actuators.
The name Arduino comes from a bar in Ivrea, Italy, where some of
the founders of the project used to meet. The ease at which various
units can be attached gained Arduino its popularity. Anyone can start
with programming and robotics by just following the step by step
instructions of a kit, or sharing ideas online with other members of the
Arduino community.

Following are few of the key points of Arduino :

• Easy to use and expensive

• Cross-platform and open source

• Simple and clear programming

Figure 3.1: Arduino Open
Source Community

• Extensible software/hardware

https://github.com/arduino/
https://www.arduino.cc/


actuator, robotics with arduino 20

3.1 Comparing Arduino to its alternatives

Arduino is not the only board available to build custom projects and ap-
plications. Raspberry Pi, BeagleBone, Sharks Cove, Minnowboard MAX,
Nanode, Waspmote or LittleBits are some of the most interesting alter-
natives to Arduino. Arduino and Raspberry Pi are the ones receiving
the most attention within the community of software developers.

Raspberry Pi is a low cost Single Board Computer (SBC) developed
by the British Raspberry Pi Foundation. They are used in places which
require higher and faster calculations. They are boards with micro
processors. Raspberry Pi acts as a mini computer with additional I/O
connection pins along with Wi-Fi, Bluetooth and ability to connect to
external devices via HDMI, USB ports etc.. It have a complete Operating
System (Raspberian) burned into a SD card.

Arduino, on the other hand is a low cost System on Chip (SoC) board.
They are used where complex information need not be analyzed. They
are heavily used in Embedded systems and IoT. They are boards with
micro controller that control other appliances. There are no Operating
System burned into Arduino. Arduino simply uses machine code
to execute instructions. The machine code are created by compiling
programs written in high level languages like C, into an executable
binary file.

(a) Arduino Uno R3 (b) Raspberry Pi 2 Model B

Figure 3.2: Development boards

3.2 Micro-controllers and Micro-processors

Micro-controllers and Micro-processors are common terms used in IoT
and embedded systems. It is worth a while to understand the difference
between them, to choose which is better to our project need.

Micro-controllers and micro-processors are used to execute instruc-
tions and control various units interfaced with them. However their
complexity and utility can vary greatly. Micro controllers are similar



actuator, robotics with arduino 21

to a small computer fabricated into a single Integrated Circuits (IC).
It contains a processor core, ROM, RAM, and I/O pins It does not
need any external circuits to do its task. It can manage memory and
other services its own. It does the job of managing units as well an
performing calculations. Micro-processor, on the other hand, has only
CPU inside them. It does not have RAM, ROM of its own. Processors
are dedicated to perform calculations. They depend on external circuits
for its peripheral like RAM, ROM to work. They are used where the
task are complex and tricky. The features are summarized in table 3.1.

(a) Microprocessor (b) Micro-controller

Figure 3.3: Processor and Micro-
Controllers

Micro processor Micro controller

RAM, ROM, EEPROM needs to be connected RAM, ROM, EEPROM are present on single IC

Expensive Cheap

High processing speed (>1Ghz) Low processing speed (<50Mhz)

No power saving technology Optimized power usage

Used in large applications Used in small application

Process complex task Process simple task

Dissipate high heat. Might need cooling Does not dissipate high heats.

Usage of external storage

(HardDisk - GB of spaces)

Usage of internal Storage

(EEPROM - few KB space)

Eg: Intel Pentium 4, Intel Core i7, AMD Athlon Eg: ATmega328, ESP8266, ESP32, ATMEGA32U4

Board: Raspberry Pi Board: Arduino

Table 3.1: Comparison of Micro-
processors and Micro-controllers

3.3 Arduino Boards

Arduino is a large community that develops various micro-controller
boards. Depending on the project application and usage, various
customized official boards are available. The most generally used
Arduino board is the “Arduino Uno”. We would be making use of
Arduino Uno to develop various projects.



actuator, robotics with arduino 22

(a) Arduino Due (b) Arduino Leonardo (c) Arduino Uno R3

(d) Arduino Mega 2560 (e) Arduino Nano (f) LillyPad Arduino
Figure 3.4: Arduino Boards

Figure 3.5: Arduino Uno ver-
sions. Notice the alignment and
position of ATMega16U2 micro-
controller



actuator, robotics with arduino 23

3.4 Arduino Uno R3

On-board units

Figure 3.6: Arduino Uno R3

Pinout

• ATmega328 micro controller
Heart of Arduino Uno R3. This micro controller unit executes in-
structions. Programs are stored inside this unit.

• ATmega16U2 micro controller
Used to assist main micro controller. Placed near to USB port to
decode USB information. Stands as a boot loader that write programs
into main micro controller. The transmit LED (Tx LED) and receive
(Rx LED) turns on whenever read or write operations are performed
to micro-controllers.

• 16Mhz
Act as heart beat of Arduino board. Serves as clock for timing
various signals.

• Use type-B
Used to interface Arduino to computer. Arduino board can be
programmed via USB. Serial communication with board and serial
monitor can also be achieved.



actuator, robotics with arduino 24

• 12V DC input
The board can be powered via 12V DC adapter. The 12V is passed
via capacitors to provide enough ampere and voltage across the
board.

• Voltage regulator
The digital circuits usually work at 5V. The 5V voltage regulator
ensures that all the units gets proper voltage levels. If the board is
successfully powered, the power LED glow brightly.

• Reset Button
At time we might need to restart the board from the beginning. The
reset button is used to reload the program from start. The reset can
also be triggered inside the program.

Micro controller : ATmega328

Parameter Value
CPU Type 8-bit AVR
Performance 20MIPS at 20MHz
Flash Memory 32 KB
SRAM 2 KB
EEPROM 1 KB
Pin Count 28 or 32 pins
Maximum operating frequency 20Mhz
Maximum I/O pins 23

External Interrupts 2

Board: Raspberry Pi Board: Arduino

Table 3.2: ATmega328 spec

3.5 Pin Layout

Pins of Arduino can be broadly divided into two categories depending
on their utility. For each pin, there is a marking on the board to denote
the function of that pin. Pins are divided into:

1. General Purpose Input Output pins ( total 20 pins )
The functions of these pins can be programmed as per user need.
They can either act as input pins or output pins. Input pins are those
pins which Arduino would be listening for voltage variations. Out-
put pins are those pins where Arduino controls the output voltage.
These pins can also be classified into two categories. They are

• Digital Pins

• Analog Pins



actuator, robotics with arduino 25

2. Special Purpose pins (total 9 pins)
The functions of these pins are predetermined and cannot be changed.
They are reserved for special purpose. They include VCC (5v and
3.3v) , Vin, GND, RESET, IOREF, AREF, ICSP header.

VCC pins provide a fixed output voltage, acting as a positive terminal
of a cell. GND pin provide a fixed zero voltage. They act as the
negative terminal of a cell. Any additional components that need to
be interfaced with Arduino would surely be connected to GND pin.
Vin pin is used to power up the Arduino. Depending on how the
board is powered, Vin pin can also act as 5v VCC pin.

RESET pin have the function similar to RESET push button. They
can cause the program to restart from the beginning. IOREF and
AREF stands for Input-output reference and Analog reference pin.
They stand as a reference point to calculate voltages at digital and
Analog pins. In-Circuit Serial Programing (ICSP) header pins are
place close to micro-controllers. It is the ability of a micro-controller
to be programmed without disconnecting from the circuitry.

3.6 Methods to power up Arduino

There are mainly three ways to power up the board.
The first method is to use UBS cable to power up the device. Just

connect USB port to computer or a power bank. In this method the Vin
pin can act as a 5V output pin. Make sure you don’t draw much power
so as the damage the port. The 12V DC jack should be kept free.

The second method is the power up via 12V DC jack. This will cause
the board to have a bit higher current to handle components connect to
it. The Vin pin act as a constant 5V DC output pin. In this method the
USB port should to kept free. To make serial communication, make use
of pins 0,1.

The third pin is to power 5V via Vin pin. The 12V jack and USB
must be kept free. In this method, the board is likely to run on lower
ampere.

3.7 Digital Pins

Digital pins are those pins that act on digital values. A positive 5V
(above 2.5V) act as binary 1 or HIGH digital signal. A ground 0V (below
2.3V) act as binary 0 or LOW digital signal. Arduino being a digital
system, all general purpose input-output pins can be used as digital
pins. There are total of 20 pins that can be used for digital signals,
ranging from pin 0 to pin13 and A0 to A5. To make use of digital
signals we make use of functions like digitalRead() and digitalWrite().



actuator, robotics with arduino 26

Figure 3.7: Digital signals

3.8 Analog Pins

The pins that support analog input are called analog pins. Analog
signals are those signals that vary continuously. That is, they do not
have a specific cutoff like digital signals. They can assume wide range
of values. Temperature is an example of analog signals that vary con-
tinuously. Since Arduino is an digital circuit, the analog signals needs
to be converted to digital signals for the micro controller to understand.
This function is performed by Analog to Digital Conversion (ADC).
ADC convert analog signal to 10bit digital value by sampling the signal
and then mapping each sample to 210 levels. There are a total of 6 pins
in Arduino Uno that supports ADC, ranging from pins A0 to A5. To
read analog value we make use of function analogRead().

Figure 3.8: Analog signals

3.9 Pulse With Modulation (PWM)

PWM is the technique used to convert the digital signals to analog
output results from Arduino. Arduino cannot directly produce various
voltage levels. Being a digital circuit, it can only produce voltage levels



actuator, robotics with arduino 27

0V and 5V. To stimulate an analog effect, it creates square waves. The
square wave have two key components: frequency and duty cycle.
Frequency stays constant of about 500 Hz whereas the duty cycle is
manipulated. Duty cycle refers to the amount of time signal stays high
in a given time cycle. If Duty cycle is 100%, we would get an effect of
100% of 5V = 5V. If Duty cycle is 50%, we would get an effect of 50% of
5V = 2.5V.

Arduino Uno can support PWM on its 6 selected pins. They are pins
3, 5, 6, 9, 10 and 11. These pins have a tilde symbol ( ~ ) associated with
their pin number on the board. The analog output function accepts 8

bit numbers, that are mapped to duty cycle. The 8 bit numbers can
produce 28 = 256 possible variations, spanning from zero to 255. The
function analogWrite() is used to produce analog output from Arduino
at PWM pins.

Figure 3.9: Pulse width Modula-
tion

ADC PWM

Analog to Digital Converter Pulse Width Modulation

Implements sampling on analog

signals to convert to digital values

Uses width of the pulse ( duty cycle) to

convert digital to analog signals

10 bit resolution : input 8 bit resolution : output

Applicable only on A0 to A5 Applicable only on 3, 5, 6, 9, 10, 11

analogRead() analogWrite()

Table 3.3: ADC v/s PWM



actuator, robotics with arduino 28

Figure 3.10: Arduino Uno Data-
sheet



4
Programming Arduino with C

Arduino is it one of the most widely used micro-controller to develop
various DIY projects. Developers design and assemble various sensors
and other components to interact with environment. Being a controller,
the board needs to be told and taught how, when, and where to commu-
nicate with other devices and environment. The process of instructing
the controller what to do, step-by-step can be termed as programming.
From being an art, programming is now an essential skill for any type
of developer. To assist in developing various programs, developers
have build various development tools to make programming easier and
fun.

4.1 Programming the voltages

A programming language is a set of grammatical rules that is under-
stood by a device. At the basic level, all digital systems work by making
a large number of voltage level switches. These voltage switches occur
between two levels, high volt and a low volt (possibly zero volt). These
large numbers of switching are represented by an array of bi (two) level
patterns called binary language. This is what the machine understands,
called the first generation language. It is very tedious and error-sum
to program in binary language ( bunch of 1’s and 0’s ). Hence small
English like mnemonics were used to program, forming the second gen-
eration language - assembly language. They are converted to a binary
pattern using an assembler. To make development easier, more English
like languages were developed like C, C++. They form the high level
language - third generation language. They are converted to binary
patterns using compilers and interpreters. There are fourth generation
and fifth generation languages developed, meeting the demands of
complex calculation. We would be tinkering around third generation
language - C programming language to program Arduino Uno.



actuator, robotics with arduino 30

4.2 Arduino IDE

IDE contains necessary tools required to write, compile and upload our
code (sketch) to Arduino. It is a open source, cross-platform application
that is written in Java. It supplies a software library which provides
many common input and output procedures. There are various form
of Arduino IDE - Arduino IDE software (windwos, linux, mac systems),
Arduino Web IDE (runs on web browser), Arduinroid ( Andriod App )
that can be used to upload our sketch. Figure 4.1: Arduino IDE

Parts of Arduino IDE

1. Verify : Checks the C program for errors

2. Upload : Burns the compiled binary executable file into Arduino
board

3. New Tab : Open a new workspace to code

4. Open : Opens new file

5. Save : save current works

6. Serial Monitor : Opens a new windows to conduct serial communi-
cations with the board

7. Sketch : The current program that is been edited

8. Code area : Areas to write code

9. Message area : View message of boards

10. Debug window : View status of boards

11. Connection Info : View current connected board configurations

Figure 4.2: Parts of IDE

Arduino IDE : quick clicks

1. Install libraries
They include code written by developers for certain sensors/usages.
Tools -> Manage Libraries
Shortcut : Ctrl + Shift + I

2. Verify / compile
Sketch -> Verify/Compile
Shortcut : Ctrl + R

3. Upload
Sketch -> Upload
Shortcut : Ctrl + U



actuator, robotics with arduino 31

Steps to upload sketch to Arduino

1. Connect Arduino to PC

2. Select board port from Tools -> Port

3. Select board type from Tools -> Boards

4. Save your code

5. Verify your code

6. Upload your code

7. Wait until code uploads. Watch the message box for status informa-
tion.

4.3 Programming language for Arduino

The official language for Arduino development is using the C/C++
programming language. C language is best known for its speed and
close relationship with memory. C language can effectively make the
most out of a given hardware optimally. The support for other pro-
gramming languages is also being developed. Python language is
gaining its support in Arduino. Take a look at https://realpython.
com/arduino-python/ to get started. Those who find difficulty in learn-
ing language, there are block codes available. It uses simple GUI to
drag and drop various code block segments that are joined together
to form a program. The automatically generated code can then be
uploaded to Arduino. Take a look at https://www.postscapes.com/
iot-visual-programming-tools/ to get started. It would be best to
write programs in C to get a clear understanding of the hardware and
the program.

Figure 4.3: block coding

https://realpython.com/arduino-python/
https://realpython.com/arduino-python/
https://www.postscapes.com/iot-visual-programming-tools/
https://www.postscapes.com/iot-visual-programming-tools/


actuator, robotics with arduino 32

4.4 Basic concepts of C language

• Data types
Data types refers to the type of value we deal with. There are
various types of data in C. They include characters, integers, decimal
numbers etc. Each data occupy specific space in the memory to store
and process those information Table 4.1 shows few commonly used
C data types and their memory consumption.

Data type What value does it hold Example Memory Space

char Single characters ‘a’, ‘b’, ‘Q’, ‘1’ 1 byte 8 bit

int Integer numbers with no decimal parts -32768 to 32767 2 byte 16 bit

long int Same as int type, with longer precision 2147483, 647885425 4 byte 32 bit

float Number with decimal point 2.312, 2.2258 etc 4 byte 32 bit

double Same as float, with longer precision 2.59874, 69.88524589 8 byte 64 bit

long double Same as double, with longer precision 658.8885421, 9986.22104 10 byte 80 bit

Table 4.1: Datatypes in C
• Variables

Data are stored in specific memory location. These memory location
names are difficult to handle. Hence we name those locations for
easy access. These names are called as variables. They simply refers
to a named storage location in the memory.
General syntax :

1 <data type > < v a r i a b l e name>;
2

Example

1 i n t number = 5 ;
2 f l o a t pie = 3 . 1 4 ;
3

• Statements
It refers to an instruction that instructs to do a specific task. In C
language, statements are ended with semicolon( ; ) There are dif-
ferent types of statements. Some of them are conditional statement,
iteration statements, jump statements.

• Functions
They refers to a group/set of instructions referenced under one name.
They increase program readability and is easy to extend a feature or



actuator, robotics with arduino 33

find errors. We can pass value to a function - called parameters. We
are free to define our own functions. However, certain functions are
defined by the system and are reserved.

• Conditional statements
These statements directs the control of the program execution based
on some conditions.
General syntax:

1 i f ( condi t ion )
2 {
3 Statements to execute i f condi t ion i s t rue
4 }
5 e l s e
6 {
7 Statements to execute i f condi t ion i s f a l s e
8 }
9

• Looping statements
These statements executes a set of statements until some condition
holds true. There are three types of loops, namely - for loops, while
loops and do while loops
General syntax - for loop :

1 f o r ( i n i t i a l i z a t i o n ; condi t ion ; updation )
2 {
3 Statements to be executed
4 }
5

General syntax - while loop:

1 while ( condi t ion )
2 {
3 Statements to be executed
4 }
5

General syntax - do while loop:

1 do {
2 Statements to be executed
3 } while ( condi t ion ) ;
4

• Arithmetic - Comparison - Logical operators
Operators gives us the power to manipulate various data. Table
4.2 shows the available operators that can be used with numbers.
Table 4.3 shows various comparison operators that can be used make
decisions. At times, we would require more than one conditions to
be satisfied. Table 4.4 show how we can club different conditions to
create single decision.



actuator, robotics with arduino 34

Symbol Meaning

+ Addition

- Subtraction

/ Division

* Multiplication

% Modulus ->returns the remainder

++ Unary addition ->adds by one

– Unary subtraction ->subtracts by one

Table 4.2: Arithmetic Operators

Symbol Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Both are equal?

Table 4.3: Comparison Operators

Symbol Name Meaning

<condition>&& <condition> AND True if both conditions are True

<condition>|| <condition> OR True if any of the conditions are True

! <condition> NOT True if condition is false

Table 4.4: Logical Operators



actuator, robotics with arduino 35

Arduino specific functions and usages

Arduino have a bunch of functions that are used by the Arduino board
for its functioning. Below are few of the commonly used functions.
Additional function and their usages can be found at https://www.

arduino.cc/reference/en/

• void setup()
This is an unavoidable function. The statements written in this
function are executed exactly once. Whenever Arduino starts (
or reset button is pressed) the program execution starts from this
function. Usually the declaration part and other configuration are
written here, that needs to be executed only once. After its execution,
it automatically calls the void loop() function.

• void loop()
This is an unavoidable function. The statements written in this
function are executed again and again. This part consist of the core
part of the program. Statements like monitoring a sensor, reading
pins etc are written here. The Arduino never stops its execution. On
reaching the end of loop(), it would execute the same function again.

• pinMode()
This function determines how the pins of the board needs to be
interfaced. It configures general purpose input output pins as input
mode or output mode. Prior to using the pin, every pin must have
its mode defined using this function. It is usually written in void
setup() function.
General syntax:

1 pinMode( < pin number> , INPUT | OUTPUT | INPUT_PULLUP ) ;
2

Example:

1 //pin 13 i s configured as output mode
2 pinMode ( 1 3 , OUTPUT) ;
3

• Serial monitor
Serial monitor is a window that can be found in Arduino IDE, that
facilitates serial communication with Arduino. Streams of data can
flow from the monitor to Arduino and from Arduino to the system.
For Arduino to listen for serial communication, Serial service must
be initiated at a specific baud rate. Baud rate is the rate at which
Arduino speaks to the system. Usually 9600 bits per second is set as
the baud rate.
Example : Printing to Serial monitor

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/


actuator, robotics with arduino 36

1 i n t value = 5 5 ;
2

3 void setup ( ) {
4 // s t a r t i n g s e r i a l communication
5 S e r i a l . begin ( 9 6 0 0 ) ;
6

7 // P r i n t a l i n e to monitor and go to new l i n e
8 S e r i a l . p r i n t l n ( " Device s t a r t e d " ) ;
9

10 // P r i n t a l i n e to monitor and remain in same l i n e
11 S e r i a l . p r i n t ( " value = " ) ;
12

13 // P r i n t a data i n s i d e a v a r i a b l e
14 S e r i a l . p r i n t l n ( value ) ;
15 }
16 void loop ( ) {
17 //do nothing
18 }
19

• digitalRead()
This function is used to read the digital state of a pin configured
as INPUT mode. If the pin have a voltage above 2.5V, the function
returns HIGH ( = 1). If the pin have a voltage below 2.3V, the function
returns LOW ( = 0).
General syntax:

1 s t a t e = dig i ta lRead ( < pin number>) ;
2

Example:

1 //reads s t a t u s of INPUT pin 12

2 i n t s t a t e = dig i ta lRead ( 1 2 ) ;
3

• digitalWrite()
This function is used to set the voltage of an OUPUT mode pin to
5V or 0V. If the pin is set to HIGH, we would get 5V at the pin. If
the pin is set to LOW, we would get 0V at the pin.
General syntax:

1 d i g i t a l W r i t e ( < pin number> , HIGH | LOW) ;
2

Example:

1 //turn on in −build LED of Arduino Uno : s e t to 5V
2 d i g i t a l W r i t e ( 1 3 ,HIGH) ;
3

4 // s e t s the vol tage l e v e l to 0V
5 d i g i t a l W r i t e ( 1 2 ,LOW) ;
6

• analogRead()
This function is used to read the analog values analog pin configured



actuator, robotics with arduino 37

as INPUT mode. Analog pin varies from A0 to A5. The analog to
digital converter (ADC) maps the voltage at the input pin into a 10

bit number. Table 4.5 summarizes the voltage to value mapping of
the function.

Voltage at analog input pin 10bit value returned
0V 0

1V 205

2.5V 512

5V 1023

Table 4.5: Analog to Digital map-
ping

General syntax:

1 value = analogRead ( < pin number>) ;
2

Example:

1 //read 10 b i t mapped vol tage of A2 analog input pin
2 i n t s t a t e = analogRead (A2 ) ;
3

• analogWrite()
This function is used to produce analog output values at the PWM
pins configured as OUTPUT mode. PWM supported pins in Arduino
Uno are 3, 5, 6, 9, 10, 11. The PWM technique maps the 8bit numbers
to 5V voltage output. Table 4.6 summarizes the functions.

Value passed Duty cycle Voltage experienced
0 0 % 0V

50 19.92% 0.99V
127 50% 2.5V
255 100% 5V

Table 4.6: Digital to Analog Map-
ping

General syntax:

1 analogWrite ( < pin number> , <8 b i t number>) ;
2

Example:

1 //Set the vol tage a t pin 5 as 2 . 5V
2 analogWrite ( 5 , 1 2 7 ) ;
3

• delay()
This function is used pause the execution of program for a defined
time. It accepts an integer denoting the number of milliseconds to
be paused.
General syntax:



actuator, robotics with arduino 38

1 delay ( < mil l i seconds >) ;
2

Example:

1 delay ( 1 0 0 0 ) ; //pauses f o r 1 second
2

• delayMicroseconds()
This function is used pause the execution of program for a defined
time. It accepts an integer denoting the number of microseconds to
be paused.
General syntax:

1 delayMicroseconds ( < microseconds >) ;
2

Example:

1 delayMicroseconds ( 1 0 ) ; //pauses f o r 10 microsecond
2

There are a lot of additional functions defined for Arduino Devel-
opment. Furthermore, developers around the world have contributed
various additional methods to facilitate easy development. These works
are compiled into small library, whose codes are made public. These
libraries can be easily downloaded and made available via library man-
ager in Arduino IDE. Additional methods are also written for various
types of Arduino boards.



actuator, robotics with arduino 39

4.5 Example Programs

Blinking an LED

1 i n t LED=13 ;
2

3 void setup ( ) {
4 pinMode (LED,OUTPUT) ;
5 S e r i a l . begin ( 9 6 0 0 ) ;
6 }
7

8 void loop ( ) {
9 d i g i t a l W r i t e (LED,HIGH) ;

10 S e r i a l . p r i n t l n ( "LED turned ON" ) ;
11 delay ( 1 0 0 0 ) ;
12

13 d i g i t a l W r i t e (LED,LOW) ;
14 S e r i a l . p r i n t l n ( "LED turned OFF" ) ;
15 delay ( 1 0 0 0 ) ;
16 }
17

Figure 4.4: Led Blinking circuit



actuator, robotics with arduino 40

Interfacing Push Button

Buttons physically isolates the circuit. The circuit is closed only when
the button is pressed. When the button is not pressed, the INPUT
pin associated with that button feels that nothing is connected and
in-circuit effects can affect the voltage. If the voltage falls below 2.3V,
we will read low signal. If the voltage falls above 2.5V, we will read
high signal. If the voltage stands between 2.3V and 2.5V, we cannot
predict the output.

(a) Pullup config

(b) Pulldown config

Figure 4.5: Button configuration

Hence push buttons are interfaced by building pullup circuits or
pulldown circuit configuration as shown in figure 4.5 . In pullup
configuration, if the button is not pressed, the 5V is connected to
the pin. When the button is pressed, the pin will be connected to
the ground (0V). The opposite happens in pulldown configuration.
However, instead of building these circuits, we can implement the
pullup circuit via the small internal resistor of the board. To avail such
capability, we need to declare the pin as INPUT_PULLUP mode.

1 i n t button = 1 2 ;
2 i n t s t a t e ;
3

4 void setup ( ) {
5 pinMode ( button , INPUT_PULLUP) ;
6 S e r i a l . begin ( 9 6 0 0 ) ;
7 }
8 void loop ( ) {
9 s t a t e = dig i ta lRead ( button ) ;

10 i f ( s t a t e == LOW ) {
11 S e r i a l . p r i n t l n ( " Button pressed " ) ;
12 }
13 e l s e {
14 S e r i a l . p r i n t l n ( " Button not pressed " ) ;
15 }
16 delay ( 5 0 0 ) ;
17 }
18

Figure 4.6: Push button circuit



actuator, robotics with arduino 41

Reading analog values : Interfacing potentiometer

1 i n t pot_pin = A0 ;
2

3 void setup ( ) {
4 pinMode ( pot_pin , INPUT) ;
5 S e r i a l . begin ( 9 6 0 0 ) ;
6 }
7

8 void loop ( ) {
9 i n t range = analogRead ( pot_pin ) ;

10 S e r i a l . p r i n t ( " Analog value : " ) ;
11 S e r i a l . p r i n t l n ( range ) ;
12 }
13

Figure 4.7: Potentiometer circuit



actuator, robotics with arduino 42

Writing analog values : Fading LED

1 i n t LED=11 ;
2 i n t b r i g h t ;
3

4 void setup ( ) {
5 pinMode (LED,OUTPUT) ;
6 S e r i a l . begin ( 9 6 0 0 ) ;
7 }
8

9 void loop ( ) {
10 S e r i a l . p r i n t l n ( " Turning ON" ) ;
11 f o r ( b r i g h t = 0 ; br ight <= 2 5 5 ; b r i g h t ++) {
12 analogWrite (LED, b r i g h t ) ;
13 delay ( 5 0 0 ) ;
14 }
15

16 S e r i a l . p r i n t l n ( " Turning OFF" ) ;
17 f o r ( b r i g h t = 2 5 5 ; br ight >= 0 ; br ight −−) {
18 analogWrite (LED, b r i g h t ) ;
19 delay ( 5 0 0 ) ;
20 }
21 }
22

Figure 4.8: LED fading circuit



5
Motor Driver

As the name suggests, motor drivers are used to drive the motors.
Motors consume higher current, more that what Arduino can supply.
Hence they are interfaced with Arduino board using a motor driver.
The motor driver consumes the power from external source and direct
them to motors, controlled by Arduino. There are various motor drivers
available. You might also able to find Arduino shields for motor drivers.
A motor driver shield is much more powerful motor driver that can
handle various DC motors, stepper motors, servo motors. In this session
we would be talking about a simple motor driver - L298N

(a) L298N board (b) 4 channel L298N Shield

Figure 5.1: L298N Motor driver

5.1 L289N motor driver

L298N motor driver is one of the many motor drivers available in the
market. This driver have 4 out lines grouped into two as channel A and
channel B. The working of the board is simple. Connect the external
power source ( 12V) to the +12V pin and the negative terminal of the
source to the GND pin. Since we need to interface it with Arduino, we
need connect the GND pin of Arduino to the GND pin of the board.
The logical signals are supplied from Arduino to the board on the pins
input1 to input4. When any of the logical pins are high, corresponding



actuator, robotics with arduino 44

OUT pin turns on and gives an output of 10V. For example, if input3
is turned to HIGH, OUT3 would provide 10V and if input 2 is LOW,
OUT2 would be at zero volt.

Figure 5.2: L298N PinOut

We can also find three jumper settings on the board. The jumper
just above the power source (12V) connects the 5V pin via 5V regulator.
The 5V pin is used to power IC on board. If the external power source is
about 10 to 12 volts, we can keep this jumper on to power the board and
motors using the 12V input. At this time, the 5V pin can act as an 5V
output pin and can be used to power up the Arduino board. If we are
providing external power supply greater than 12V, remove the jumper
settings. The 5V regulator can get damaged. At this time, we would
require additional 5V supply from Arduino to power the IC. L298N can
handle up-to 35volts of external supply. Keep in mind that the board
draws higher current and can exhaust your battery. Providing higher
voltages can also cause the IC’s to heat up rapidly. Make sure to cool
them if they crosses the threshold.

The second jumper you can find are at either sides of the logical
input pins. On the left side we have jumper for channel A and on right
side for channel B. These pins actually control the speed of the motors.
To adjust the speed of motor in each channel, remove the jumpers and
connect PWM pins of Arduino to control the speeds. If you want to
function the motors at full capacity, keep the jumper ON.



actuator, robotics with arduino 45

5.2 Interfacing DC motor - motor driver - Arduino

Let us connect the motor driver and Arduino. The driver would be
powered up via external supply and Arduino will be powered via USB
cable. In this sample connection , lets connect and 10V DC motor to
each channels. The next question is, how to control the direction of
the motors? Lets consider the channel A. The terminal of the motor is
connected to the OUT pins.

INPUT 1 INPUT2 OUT1 OUT2 Potential difference = OUT1-OUT2 Motor direction

LOW LOW 0v 0v 0V NULL

LOW HIGH 0v 10v -10V Anti-clockwise

HIGH LOW 10v 0v 10V Clockwise

HIGH HIGH 10v 10v 0V NULL

Table 5.1: The voltage difference
experienced at each terminal can
effect the rotation of motor

From the table 5.1, it is clear that by inverting the logical signals,
we can change the direction of motor. The same can be applied at the
channel B for direction control.

Now lets make the connections!

Figure 5.3: Interfacing Motor
driver with Arduino

As shown in the figure 5.3, we have connected pins 8, 7, 5, 4 to
input1, input2, input3 and input4 respectively. Both the boards shares
the common GND and the driver is powered via 12V supply. Let’s
write a program that turns the motors clockwise and anti clockwise to



actuator, robotics with arduino 46

control the bot movement. The bot movement are summarized in the
table 5.2.

1 i n t m1 = 8 , m2 = 7 ; // l e f t motor pins
2 i n t m3 = 5 , m4 = 4 ; // r i g h t motor pins
3

4 void setup ( ) {
5 // s e t motor pins as output f o r Arduino .
6 pinMode (m1 ,OUTPUT) ; pinMode (m2 ,OUTPUT) ;
7 pinMode (m3 ,OUTPUT) ; pinMode (m4 ,OUTPUT) ;
8

9 S e r i a l . begin ( 9 6 0 0 ) ;
10 }
11

12 //A funct ion to c o n t r o l motor movement
13 void turn_motor ( i n t input1 , i n t input2 , char d i r ) {
14 i f ( d i r == ’ F ’ ) {
15 //clockwise r o t a t i o n
16 d i g i t a l W r i t e ( input1 ,HIGH) ;
17 d i g i t a l W r i t e ( input2 ,LOW) ;
18 }
19 e l s e i f ( d i r == ’B ’ ) {
20 //ant i −clockwise r o t a t i o n
21 d i g i t a l W r i t e ( input1 ,LOW) ;
22 d i g i t a l W r i t e ( input2 ,HIGH) ;
23 }
24 e l s e i f ( d i r == ’ S ’ ) {
25 //no r o t a t i o n
26 d i g i t a l W r i t e ( input1 ,LOW) ;
27 d i g i t a l W r i t e ( input2 ,LOW) ;
28 }
29 }
30

31 void loop ( ) {
32

33 turn_motor (m1 , m2 , ’ F ’ ) ; // l e f t wheel : c lockwise
34 turn_motor (m3 , m4 , ’ F ’ ) ; // r i g h t wheel : c lockwise
35 S e r i a l . p r i n t l n ( " Bot moving forward " ) ;
36 delay ( 1 0 0 0 ) ;
37

38 turn_motor (m1 , m2 , ’B ’ ) ; // l e f t wheel : ant i −clockwise
39 turn_motor (m3 , m4 , ’ F ’ ) ; // r i g h t wheel : c lockwise
40 S e r i a l . p r i n t l n ( " Bot turning l e f t ( rapid ly ) " ) ;
41 delay ( 5 0 0 ) ;
42

43 turn_motor (m1 , m2 , ’ F ’ ) ; // l e f t wheel : c lockwise
44 turn_motor (m3 , m4 , ’B ’ ) ; // r i g h t wheel : ant i −clockwise
45 S e r i a l . p r i n t l n ( " Bot turning r i g h t ( rapid ly ) " ) ;
46 delay ( 5 0 0 ) ;
47

48 turn_motor (m1 , m2 , ’B ’ ) ; // l e f t wheel : ant i −clockwise
49 turn_motor (m3 , m4 , ’B ’ ) ; // r i g h t wheel : ant i −clockwise
50 S e r i a l . p r i n t l n ( " Bot moving backward " ) ;
51 delay ( 1 0 0 0 ) ;
52

53 turn_motor (m1 , m2 , ’ S ’ ) ; // l e f t wheel : stop
54 turn_motor (m3 , m4 , ’ S ’ ) ; // r i g h t wheel : stop
55 S e r i a l . p r i n t l n ( " Bot stopped " ) ;
56 delay ( 5 0 0 0 ) ;
57 }



actuator, robotics with arduino 47

Table 5.2: Bot movement

INPUT1 INPUT2 INPUT3 INPUT4 Left Wheel Right Wheel Bot movement

HIGH LOW HIGH LOW Clockwise Clockwise Forward

LOW HIGH LOW HIGH Anti-clockwise Anti-clockwise Backward

LOW LOW HIGH LOW Stop Clockwise Left (slowly)

LOW HIGH HIGH LOW Anti-clockwise Clockwise Left (rapidly)

LOW HIGH LOW LOW Anti-clockwise Stop Left (slowly)

HIGH LOW LOW LOW Clockwise Stop Right (slowly)

HIGH LOW LOW HIGH Clockwise Anti-clockwise Right (rapidly)

LOW LOW LOW HIGH Stop Anti-clockwise Right (slowly)

LOW LOW LOW LOW Stop Stop Paused

5.3 Speed controlled Bot

You might have noticed that the bot drifts or becomes unstable when it
changes it direction suddenly. This is because the wheels are rotating
with higher speed than our bot can handle. The solution to such
problems is the control the speed of the wheels. This can be easily
achieved by making use of PWM pins in the motor driver. Lets try out
our new speed controlled bot. It is easy to modify the above circuit and
code to build the new bot quickly.

Re-configure the circuit by removing the jumper pins of channel A
and B. Connect PWM pins 9 and 3 of Arduino to channel A and channel
B respectively. You can identify PWM pins in Arduino by noticing the
tilde symbol ( ~ ) on the board. The new circuit looks like figure 5.4.
Modify the program for the new connection.

1 i n t pwmL= 9 , m1= 8 , m2= 7 ; // l e f t motor pins
2 i n t pwmR= 3 , m3= 5 , m4= 4 ; // r i g h t motor pins
3

4 void setup ( ) {
5 // s e t motor pins as output f o r Arduino .
6 pinMode (m1 ,OUTPUT) ; pinMode (m2 ,OUTPUT) ;
7 pinMode (m3 ,OUTPUT) ; pinMode (m4 ,OUTPUT) ;
8

9 pinMode (pwmL,OUTPUT) ; pinMode (pwmR,OUTPUT) ;
10

11 S e r i a l . begin ( 9 6 0 0 ) ;
12 }
13

14 //A funct ion to c o n t r o l motor movement with speed r e g u l a t i o n
15 void turn_motor ( i n t in1 , i n t in2 , i n t PWM, i n t speed , char d i r ) {
16 // S e t t i n g the speed
17 analogWrite (PWM, speed ) ;



actuator, robotics with arduino 48

18

19 i f ( d i r == ’ F ’ ) { //clockwise r o t a t i o n
20 d i g i t a l W r i t e ( in1 ,HIGH) ;
21 d i g i t a l W r i t e ( in2 ,LOW) ;
22 }
23 e l s e i f ( d i r == ’B ’ ) { //ant i −clockwise r o t a t i o n
24 d i g i t a l W r i t e ( in1 ,LOW) ;
25 d i g i t a l W r i t e ( in2 ,HIGH) ;
26 }
27 e l s e i f ( d i r == ’ S ’ ) { //no r o t a t i o n
28 d i g i t a l W r i t e ( in1 ,LOW) ;
29 d i g i t a l W r i t e ( in2 ,LOW) ;
30 }
31 }
32

33 void loop ( ) {
34

35 // l e f t wheel : clockwise , speed=100%
36 // r i g h t wheel : clockwise , speed=50%
37 turn_motor (m1 , m2 , pwmL, 255 , ’ F ’ ) ;
38 turn_motor (m3 , m4 , pwmR, 127 , ’ F ’ ) ;
39 S e r i a l . p r i n t l n ( " Bot moving forward with small r i g h t curve " ) ;
40 delay ( 1 0 0 0 ) ;
41

42 // l e f t wheel : clockwise , speed=0%
43 // r i g h t wheel : clockwise , speed=50%
44 turn_motor (m1 , m2 , pwmL, 0 , ’ F ’ ) ;
45 turn_motor (m3 , m4 , pwmR, 127 , ’ F ’ ) ;
46 S e r i a l . p r i n t l n ( " Bot moving l e f t with low speed " ) ;
47 delay ( 1 0 0 0 ) ;
48 }

Figure 5.4: PWM supported
wheel control

Keep in mind that PWM pins are 8-bit support pins. The Maximum
analog value we can send is 255 i.e., 28 − 1 (counting starts from zero).



actuator, robotics with arduino 49

If PWM value is set to 255, the motors will run at full capacity and
would decrease as the value decreases. Do note that you are controlling
the effective voltage sent to the motor and not the actual wheel rotation.
To control the rotation of the wheel precisely, we would have to make
use of stepper motors. Table 5.3 show the effective voltage felt at the
motors.

PWM value Pulse width % Effective voltage at 10V motor

255 255/255 = 100.0% 100.0% * 10V = 10.0V

150 150/255 = 58.82% 58.82% * 10V = 5.88V

127 127/255 = 49.80% 49.80% * 10V = 4.98V

75 75/255 = 29.41% 29.41% * 10V = 2.94V

Table 5.3: Voltage experienced
by the motors is in accordance
with the effective voltage given
by PWM pins

Try connecting few sensors like Ultrasonic sensors, Infra-Red (IR)
sensor, Light Dependent Resistor (LDR), Accelerometer etc to make
your bot autonomous and attractive!



6
Interfacing IR sensors

IR stands for Infrared Radiation, is an Electro Magnetic Radiation
(EMR) with wavelengths longer than those of visible light. Discovered
in 1800 by astronomer Sir William Herschel, IR is a region of the EMR
spectrum where wavelengths range from about 700 nanometers (nm)
to 1 millimeter (mm). They are longer than those of visible light, but
shorter than those of radio waves. As they do not fall under the visible
spectrum, they remain invisible to human eye. Certain animals and
cameras can pick up those radiation and perceive them as images.

Figure 6.1: Infrared Spectrum

Based on their range of wave lengths, IR can be further classified
into three regions. The Near Infrared regions spans from 700nm to
1400nm and is widely used in most of the IR sensors and fibre optics.
The Mid infrared region spans from 1400nm to 300nm and is mainly
used in heat sensing applications. The Far infrared region that spans
from 300nm to 1mm is majorly used in thermal imaging. These different
region are effectively used to build various application like night vision
devices, infrared astronomy, infrared missile tracking etc.

6.1 Types of IR sensors

There are various IR sensors available in the market. Based on their
configuration, we can classify them as Active IR sensors and Passive



actuator, robotics with arduino 51

Infrared (PIR) sensor . Active IR sensors are those sensor capable of
both producing and sensing IR signals while PIR sensors mainly consist
of detectors. Most of the motion detectors make use of PIR. The PIR
detects the IR signals caused due to the heat energy transmitted by any
object. In this chapter we would focus on Active IR sensor.

6.2 Active IR Sensors

An active IR sensor consist of both IR transmitter and IR receiver. The
transmitter transmits the IR signals which would strike on an object and
would bounce back to the receiver. However not all signals are bounced
from the surface of the object. The bouncing of signals depends on the
colour and material of the object. The dark colors have the ability to
absorb more energy and transmit only a small portion of the received
light. Light colors on the other hand, reflects most of the received
light signals. It is this change of deflection of light that gives us the
perception for colors. Since IR sensor is only capable of detecting the
presence/absence of IR signals, they are employed to detect bright/dark
surfaces. An IR sensor is not capable of differentiating various colors.

Figure 6.2: Behaviour of IR Sen-
sor

(a) White surface (b) Black surface

Figure 6.3: Working of IR sensor

6.3 IR sensor boards

Now lets talk about the component required for a complete Active IR
sensor. An IR sensor have two major LED that does the purpose of
transmission and detection of signals. A transmission LED looks just
like an normal LED diode. Upon applying sufficient voltage across the



actuator, robotics with arduino 52

terminals, the LED produces signals which are transmitted in a straight
line. A receiver LED act as an photo-diode that excite electrons upon
receiving an IR signal. The receiver changes its resistance, which is
used to detect the presence of IR signal. It is quite easy to identify both
the LED. The IR receiver would be in dark color to prevent detection
of surrounding IR signals. Note that the Sun emits a wide range of
EMR, so it possible for IR receiver to detect the IR signals from the
sunlight. Although it appears just like two LED, we would require
proper circuitry to get a calibrated reading. Keep in mind that the
receiver and transmitter LED need not always be on the same board,
they can have separate circuits to function properly.

6.4 Detailing IR sensor FC-51

There are various IR sensor boards available in the market. You may
choose any IR sensors suitable for your application. However the
underlying principle of IR sensor are the same. Here we would make
use of IR sensor board FC-51 to interface with Arduino.

Figure 6.4: FC-51 IR Sensor
board

A typical IR sensor board consist of both the transmitter and receiver
diodes along with supporting circuitry which includes a potentiometer,
an IC and a couple of resistors and LEDs. The potentiometer is used
to adjust the sensitivity of the board. The more sensitive the board
is, greater will be the amplification of weak signal detected. In other
words, it would be able to detect IR signal from greater distance. The
IC would amplify the change in the resistance of IR receiver LED
and trigger corresponding voltage variations. We can also find two
additional indicative LED on the board. One of the LED glows if the
board is powered and the other LED glows when the board detects IR
signals.

Now lets talk about the pins on the board. FC-51 have three legs for
interfacing with Arduino. Each legs have there associated marking on
the board to indicate what that leg is used for. The VCC pin indicates



actuator, robotics with arduino 53

Figure 6.5: IR sensor board de-
scription

the power in for the board. The 5v supply from micro-controller is
connected to the VCC and the ground (GND) of the board is connected
to the GND pin of micro-controller. The OUT pin of the board would
act as the input for the Arduino. The OUT pin gives out 5V upon
detecting a bright surface and 0V upon detecting a dark surface. There
do exist inverted boards that just detects the opposite! ( see table 6.1)
So keep in mind to check board you have before you start coding.

Type of board Color of surface OUT signal
Non inverted Bright 5V(high)

Dark 0V(low)
Inverted Bright 0V(low)

Dark 5V(high)

Table 6.1: Inverted and Non-
inverted IR boards

Usually in an digital circuit, voltage below 2.3v is regarded as a
low signal ( 0v | binary zero) and those above 2.5v as high signal (
5v | binary 1). There do exist IR sensor boards that provide analog
output reading. Make sure to understand the configuration of the board
before interfacing with Arduino. With that, let start coding. Since FC-51

gives digital output ( HIGH | LOW ) we would be using digital pin of
Arduino to interface.

6.5 Code example 1

Objective: Program to print the status of IR sensor to Serial monitor

1 i n t IR_pin = 2 ; //connect OUT pin of IR to 2nd pin of Arduino
2

3 void setup ( ) {
4

5 pinMode ( IR_pin , INPUT) ; //IR as an input s i g n a l
6 S e r i a l . begin ( 9 6 0 0 ) ; //Baud r a t e
7 }
8

9 void loop ( ) {
10

11 //Reading the d i g i t a l s t a t e of IR_pin
12 i n t s t a t e = dig i ta lRead ( IR_pin ) ;
13



actuator, robotics with arduino 54

14 i f ( s t a t e == HIGH) {
15 S e r i a l . p r i n t l n ( " Br ight s u r f a c e detec ted " ) ;
16 }
17 e l s e {
18 S e r i a l . p r i n t l n ( " Dark s u r f a c e detec ted " ) ;
19 }
20

21 //Slow down the code so t h a t s e r i a l monitor
22 // does not f lood with c h a r a c t e r s
23 delay ( 5 0 0 ) ;
24 }

Figure 6.6: Interfacing IR with
Arduino

Set the serial monitor at 9600 baud rate and see the results. We can
find that when there is no object in front of sensor or in the presence
of a dark object, the serial monitor shows "Dark surface detected".
The monitor would show "Bright surface detected" when there is a
white/reflective surface is introduced. Keep in mind that the sun
light/flames also emit IR radiations that can be detected by IR sensors.

6.6 Code example 2

Objective: Program to turn on the in-build LED at pin 13 of Arduino
Uno if IR sensor detects a while surface. Else keeps the LED off. The
circuit of previous example can be used.

1 i n t IR_pin = 2 ;
2 i n t LED = 1 3 ;
3

4 void setup ( ) {
5 pinMode ( IR_pin , INPUT) ;
6 pinMode (LED,OUTPUT) ;
7 }
8 void loop ( ) {
9 i n t s t a t e = dig i ta lRead ( IR_pin ) ;

10 d i g i t a l W r i t e (LED, s t a t e ) ;
11



actuator, robotics with arduino 55

12 // a l t e r n a t i v e l y use the s i n g l e l i n e code
13 // d i g i t a l W r i t e (LED, dig i ta lRead ( IR_pin ) ) ;
14

15 delay ( 2 0 0 ) ;
16 }

6.7 Line Follower bot

Line follower bot is an simple bot that make use of IR sensors. The bot
consist of IR sensors ( usually an IR sensor array - figure 6.7), wheel
and motors, motor driver, Voltage source all placed in a chassis. An
IR array is a collection of 4 to 6 IR sensor receive and transmitter. We
would be reading values from individual pair of sensors. Another
major component is the motor driver. As the name suggests, they are
used to drive motors. Jump to the chapter 5 to setup the bot - wheels
and motors.

Figure 6.7: IR Array

Line follower bot follows a line to its destination. To detect the more
precisely, the paths is formed by black lines in a white background or
white path in black background. Usually the later is chosen as it is easy
to construct black path in white background. For this simple bot, we
would be making use of two IR sensors instead of an IR array. Our bot
would have two wheels instead of four, although it is easy to extend to
four wheels.

(a) IR Bot (b) Line follower path

Figure 6.8: Line follower - bot
and path

6.8 Tracing line - Line follower

The main event of the line follower is to trace the line. In our sample
environment, we would be using two IR sensors to detect the black line
on the while surface. The bot is placed such that the black line moves
right through the center of the bot. Both the sensors are places right
next to the dark line.

Figure 6.9: Line follower sensor
alignment

Table 6.2 have listed all sort of possible combinations with 2 IR
sensors. Now lets implement them in our bot. Take a quick peek at
the section 5.2 where we have programmed a small bot. Lets add the
additional IR sensors to them to complete our line follower.



actuator, robotics with arduino 56

Table 6.2: Line follower move-
ment

Path property Left IR Right IR Bot Motion Scenario

Straight path HIGH (white) HIGH (white) Forward

Makes a right curve HIGH (white) LOW (black) Turn right

Makes a left curve LOW (black) HIGH (white) Turn left

Cross bar LOW (black) LOW (black) Stop

Figure 6.10: IR Line follower Cir-
cuit



actuator, robotics with arduino 57

Lets detail the connection of the circuit show in figure 6.10. The
VCC and GND of IR sensors are connected to 5V and GND of Arduino.
The left IR sensor (bottom) gives its output to 11th pin of Arduino
while the right IR sensor (top) gives its output to 6th pin of Arduino.
The GND of motor driver is connected to the GND of Arduino and
input1, input2, input3, input4 of driver are connected to pins 8, 7, 5, 4

pins of Arduino respectively. Left motor is connected to the channel A
and right motor is connected to channel B of the motor driver. Finally
we powered the driver using a 12v adapter and connected the GND of
driver and Arduino to it. Now lets implement the logic depicted on the
table 6.2.

1 i n t m1 = 8 , m2 = 7 ; // l e f t motor pins
2 i n t m3 = 5 , m4 = 4 ; // r i g h t motor pins
3 i n t i r 1 = 11 , i r 2 = 6 ; // l e f t and r i g h t \ac { IR } sensor inputs
4

5 void setup ( ) {
6 // s e t motor pins as output f o r Arduino .
7 pinMode (m1 ,OUTPUT) ; pinMode (m2 ,OUTPUT) ;
8 pinMode (m3 ,OUTPUT) ; pinMode (m4 ,OUTPUT) ;
9

10 // s e t IR pins as input f o r Arduino
11 pinMode ( i r1 , INPUT) ; pinMode ( i r2 , INPUT) ;
12

13 S e r i a l . begin ( 9 6 0 0 ) ;
14 }
15

16 //A funct ion to c o n t r o l motor movement
17 void turn_motor ( i n t input1 , i n t input2 , char d i r ) {
18 i f ( d i r == ’ F ’ ) {
19 //clockwise r o t a t i o n
20 d i g i t a l W r i t e ( input1 ,HIGH) ;
21 d i g i t a l W r i t e ( input2 ,LOW) ;
22 }
23 e l s e i f ( d i r == ’ S ’ ) {
24 //no r o t a t i o n
25 d i g i t a l W r i t e ( input1 ,LOW) ;
26 d i g i t a l W r i t e ( input2 ,LOW) ;
27 }
28 }
29

30 void loop ( ) {
31 //reading the IR sensors
32 i n t l e f t = dig i ta lRead ( i r 1 ) ;
33 i n t r i g h t = dig i ta lRead ( i r 2 ) ;
34

35 i f ( l e f t == HIGH && r i g h t == HIGH) { //Forward motion
36 turn_motor (m1 , m2 , ’ F ’ ) ;
37 turn_motor (m3 , m4 , ’ F ’ ) ;
38 S e r i a l . p r i n t l n ( " Bot moving forward " ) ;
39 }
40 e l s e i f ( l e f t == HIGH && r i g h t == LOW) { //Right motion
41 turn_motor (m1 , m2 , ’ F ’ ) ;
42 turn_motor (m3 , m4 , ’ S ’ ) ;
43 S e r i a l . p r i n t l n ( " Bot turning r i g h t " ) ;
44 }
45 e l s e i f ( l e f t == LOW && r i g h t == HIGH) { // L e f t motion
46 turn_motor (m1 , m2 , ’ S ’ ) ;



actuator, robotics with arduino 58

47 turn_motor (m3 , m4 , ’ F ’ ) ;
48 S e r i a l . p r i n t l n ( " Bot turning l e f t " ) ;
49 }
50 e l s e { //Stopping the bot
51 turn_motor (m1 , m2 , ’ S ’ ) ;
52 turn_motor (m3 , m4 , ’ S ’ ) ;
53 S e r i a l . p r i n t l n ( " Bot paused " ) ;
54 }
55 delay ( 1 0 0 ) ;
56 }

You might have noticed that the bot drifts or becomes unstable
when it changes it direction suddenly. This is because the wheels are
rotating with higher speed than our bot can handle. The solution to
such problems is the control the speed of the wheels. Refer the section
5.3 to build speed controlled bot. You may also find that bot travels
in a zig-zag fashion, the curves are not covered smoothly or the bot
may miss some sharp curves. To avoid such problems, line followers
are build using an IR array, where there are more sensors to detect the
intensity of curves etc.

Line follower is one of the popular projects in Arduino-ROBOTICS.
Various competitions are held across the world with varying difficulty
and challenges. Maze solver is one of the most common event held.
Speed, accuracy and reliability of bots are noted to announce the winner.
To improve the probability of bagging the price, various statistical
theories, mathematical models are applied and coded into the programs.
Here we have detailed the basics of line follower. The rest is left to you
to explore!

Figure 6.11: Line follower maze



7
Interfacing UltraSonic sensors

Defined by the American National Standards Institute, a ultra-sound
are sound frequencies greater than 20Khz. They are normal sound
waves which humans cannot hear, but some animals can. Humans ears
can detect sound of frequencies in the range from 20Hz to 20KHz. Ultra
sonic waves behave similar to normal sound waves i.e., they propagate
at 340m/s and reflects upon striking a surface. They are widely em-
ployed in detection and raging, imaging, under water communication
etc.

Figure 7.1: The Ultrasonic Spec-
trum

The production of ultrasonic waves requires a transmitter that trans-
mit wave pulses, which are then received by a receiver. These two unites
are imprinted in a board to be synchronous in achieving the task. The
sensor is controlled by digital signals (pulses), produced/controlled by
micro controllers or processors.

7.1 Ultrasonic sensor

There are various series of ultrasonic sensor available. They differ in
their functionality on the projects. Few sensors have higher sensitivity,
other few have more or less number of connection pins etc. The utility
of each sensor is based on the projects they are used. Few sensors
can be preferred more that other sensor in a particular project. In this
session, we would be detailing about HC-SR04, one of the commonly



actuator, robotics with arduino 60

used ultrasonic sensors.

Figure 7.2: HC-SR04 Ultrasonic
Sensor

7.2 Detailing HC-SR04 ultrasonic sensor

HC-SR04 is the most commonly used ultrasonic sensor. It is inter-
faced with Arduino via four pins. The board have a two cylinder like
structures with a mesh/net on them. They are the transmitter and
receivers made up of crystals of materials such as quartz that vibrate
very fast when electricity is passed through them—an effect called
“piezoelectricity.” As they vibrate, they manipulate the air around them
and the fluids they come in contact with, producing ultrasonic waves.
In transmitter, the electricity is passed to the crystal to produce waves.
In the receiver, the vibrating crystal produce small voltages that are
detected and amplified. The cylinder that transmit waves have a small
marking “T” at the edge and the receiver have a “R” marking at its
edge. To synchronize the activity, the board has and 4Mhz oscillator to
act as a timer. This specific board can detect an object if it is between
2-40cm range in front of the sensors.

Figure 7.3: HC-SR04 Pinout



actuator, robotics with arduino 61

7.3 Pins on HC-SR04

The board have 4 pins, they are VCC, TRIG, ECHO, GND. To power
up the sensor, 5V and GND of Arduino are connected to the VCC
and GND pins of the sensor. The TRIG is the input pin, that denote
how long should the sensor produce ultrasonic waves. The ECHO is
the output pin that denotes how long have we waited to receive the
ultrasonic wave. Keep in mind that the input of the sensor will be
connected to the output pin of Arduino and the output pin of sensor
will be interfaced as input pin for Arduino. In short, the signal travels
from sensor to Arduino in ECHO pin and from Arduino to sensor in
TRIG pin.

7.4 Working of HC-SR04 sensor

(a) Transmission (b) Receiving

Figure 7.4: Ultrasonic waves
bounces from surface

Initially we would put TRIG pin high for about 10 micro seconds.
The sensor, upon receiving this signal, produce eight 40KHz pulses
automatically. After producing short pulse burst, it would start the
timer and pulls the ECHO pins to a high signal. It would then wait for
the transmitted signal to reach back to the sensor. Upon receiving the
first wave, it pulls the ECHO pin to low. We would record the time the
ECHO pin remained high to calculate the distance between the sensor
and the object.

7.5 Calculation of the distance

We know that

speed =
distance

time

Or,

distance = speed ∗ time

We have,



actuator, robotics with arduino 62

Speed of sound = 340m/s
Time can be fetched from the ultrasonic sensors.

Do note that the speed is in m/s and the time we receive is in µs.
Lets formulate a formula to convert the units so that the distance can
be measured in centi-meters (cm).

Let ‘ t ’ denote the time we get from sensor in µs. Keep in mind that
this time is the time taken by the waves to travel from sensors to the
object and back to the sensors. In short, they have covered the distance
twice. So the time required by the wave to travel from sensors to object
is t/2 µs. Lets substitute the values in the formula

distance = 340m/s ∗ t
2

µs

distance = 340 ∗ t
2

mµs
s

distance = 170t µm

distance = 170t ∗ 10−6 m

distance = 170t ∗ 10−4 cm

distance = 0.017 t cm

7.6 Code example 1

Objective : To print the distance of a object from sensor in serial monitor.

1 i n t TRIG = 1 0 ; // t r i g g e r pin of sensor
2 i n t ECHO = 9 ; //echo pin of sensor
3 long duration ; //to s t o r e the time ( micro seconds )
4 f l o a t d i s t a n c e ; //to s t o r e the d i s t a n c e (cm)
5

6 void setup ( ) {
7 pinMode ( TRIG ,OUTPUT) ; //TRIG as output of Arduino
8 pinMode (ECHO, INPUT) ; //ECHO as input of Arduino
9 S e r i a l . begin ( 9 6 0 0 ) ; //Baud r a t e

10 }
11

12 void loop ( ) {
13 //wait f o r some time to c l e a r the u l t r a s o n i c
14 //waves i f present in environment
15 d i g i t a l W r i t e ( TRIG ,LOW) ;
16 delayMicroseconds ( 2 ) ;
17

18 // c r e a t e u l t r a s o n i c burs t
19 d i g i t a l W r i t e ( TRIG ,HIGH) ;
20 delayMicroseconds ( 1 0 ) ;
21 d e g i t a l W r i t e ( TRIG ,LOW) ;
22

23 //record the duration ECHO pin stood HIGH
24 durat ion = pulseIn (ECHO,HIGH) ;



actuator, robotics with arduino 63

25

26 // c a l c u l a t e the d i s t a n c e
27 d i s t a n c e = 0 . 017 * durat ion ;
28

29 // p r i n t the d i s t a n c e
30 S e r i a l . p r i n t ( " The o b j e c t i s a t " ) ;
31 S e r i a l . p r i n t ( d i s t a n c e ) ;
32 S e r i a l . p r i n t l n ( " cm" ) ;
33

34 //Slow down the code so t h a t s e r i a l monitor
35 //does not f lood with c h a r a c t e r s
36 delay ( 1 0 0 0 ) ;
37 }

Figure 7.5: Ultrasonic Sensor
with Arduino

It is always advised to wait for at least 2µs to clear the already
existing ultrasonic wave in the environment. Try moving the hand in
front of sensor to see varying distances. What would happen if we kept
our hand on the sensor ( i.e. 0cm distance)? Why does it show high
value instead of printing zero? Keep in mind that the receiver needs to
detect some ultrasonic waves to pull the ECHO pin down.

7.7 Object avoider-bot

Let us now try to create a bot that can avoid the objects in front of it
and keep travelling. There are various models of such bot available. In
this session we would be making use of two ultrasonic sensors and a



actuator, robotics with arduino 64

bot (with chassis, motor, motor driver, wheel) to construct an object
avoider bot. Get an peek into the chapter 5 to know various part of
constructing a bot. We would be making use of bot build in the section
5.2 to construct our object avoider bot.

Figure 7.6: Obstacle Avoider
Bot using Arduino Nano

We will be programming the bot to avoid the obstacle if it comes
less than 10cm in front of the bot. The table 7.1 summarizes our flow.
Here we have listed all sort of possible combinations with 2 IR sensors.
Now lets implement them in our bot. Take a quick peek at the section
5.2 where we have programmed a small bot. Lets add the additional
ultrasonic sensors to them to complete our obstacle avoider. Table 7.1: Obstacle Avoider Mo-

tion

Left Ultrasonic sensor Right Ultrasonic sensor Bot Motion Scenario

>10cm >10cm Forward

>10cm <=10cm Turn left

<=10cm >10cm Turn right

<=10cm <=10cm Default:Rotate left

Lets details the connections figure 7.7 . First connect motors to motor
driver. Now lets interface motor driver with Arduino Uno. Connect the
pins input1, input2, input3, input4 of motor drive to Arduino pins 8, 7,
5 and 4 receptively. The left ultrasonic sensor (top) have its TRIG and
ECHO pins connected to 12 and 11 pins of Arduino. Connect its VCC
and GND to Arduino 5V and GND respectively. The right ultrasonic
sensor (bottom) have its TRIG and ECHO pins connected to 3 and 2

pins of Arduino. Connect its VCC to 5V pin of motor driver and GND
to GND pin of Arduino. Each ultrasonic sensor needs separate 5V line.
If there are no other 5V source, then you can set any unused pin of



actuator, robotics with arduino 65

Arduino to HIGH and extract 5V from that pin. Finally connect the 12V
power line to 12V pin of motor driver and GND pin of motor driver to
GND of Arduino and the negative terminal of the 12V source. Power
the Arduino using USB cable. With that we have completed the circuits.
Now lets build the code.

Figure 7.7: Obstacle Avoider Cir-
cuit

1 i n t m1 = 8 , m2 = 7 ; // l e f t motor pins
2 i n t m3 = 5 , m4 = 4 ; // r i g h t motor pins
3

4 i n t t r i g _ L = 12 , echo_L = 1 1 ; // l e f t u l t r a s o n i c sensors
5 i n t t r ig_R = 3 , echo_R = 2 ; // r i g h t u l t r a s o n i c sensors
6

7 f l o a t distance_L , distance_R ; //to s t o r e each d i s t a n c e s
8 long duration ; //to s t o r e time temporar i ly
9 f l o a t o b j _ d i s t = 1 0 . 0 ; //threshold d i s t a n c e

10

11 void setup ( ) {
12 // s e t motor pins as output f o r Arduino .
13 pinMode (m1 ,OUTPUT) ; pinMode (m2 ,OUTPUT) ;
14 pinMode (m3 ,OUTPUT) ; pinMode (m4 ,OUTPUT) ;
15

16 // s e t TRIG pins as OUTPUT and ECHO pins as INPUT
17 pinMode ( tr ig_L ,OUTPUT) ; pinMode ( echo_L , INPUT) ;
18 pinMode ( tr ig_R ,OUTPUT) ; pinMode ( echo_R , INPUT) ;
19

20 S e r i a l . begin ( 9 6 0 0 ) ;
21 }
22

23 //A funct ion to c o n t r o l motor movement
24 void turn_motor ( i n t input1 , i n t input2 , char d i r ) {
25 i f ( d i r == ’ F ’ ) {
26 //clockwise r o t a t i o n



actuator, robotics with arduino 66

27 d i g i t a l W r i t e ( input1 ,HIGH) ;
28 d i g i t a l W r i t e ( input2 ,LOW) ;
29 }
30 e l s e i f ( d i r == ’B ’ ) {
31 //ant i −clockwise r o t a t i o n
32 d i g i t a l W r i t e ( input1 ,LOW) ;
33 d i g i t a l W r i t e ( input2 ,HIGH) ;
34 }
35 e l s e i f ( d i r == ’ S ’ ) {
36 //no r o t a t i o n
37 d i g i t a l W r i t e ( input1 ,LOW) ;
38 d i g i t a l W r i t e ( input2 ,LOW) ;
39 }
40 }
41

42 void loop ( ) {
43

44 // reading value from l e f t sensors
45 d i g i t a l W r i t e ( t r ig_L ,LOW) ;
46 delayMicroseconds ( 2 ) ;
47 d i g i t a l W r i t e ( t r ig_L ,HIGH) ;
48 delayMicroseconds ( 1 0 ) ;
49 d e g i t a l W r i t e ( t r ig_L ,LOW) ;
50 durat ion = pulseIn ( echo_L ,HIGH) ;
51 distance_L = 0 .017 * durat ion ;
52

53 // reading value from r i g h t sensors
54 d i g i t a l W r i t e ( tr ig_R ,LOW) ;
55 delayMicroseconds ( 2 ) ;
56 d i g i t a l W r i t e ( tr ig_R ,HIGH) ;
57 delayMicroseconds ( 1 0 ) ;
58 d e g i t a l W r i t e ( tr ig_R ,LOW) ;
59 durat ion = pulseIn ( echo_R ,HIGH) ;
60 distance_R = 0 .017 * durat ion ;
61

62 i f ( dis tance_L > o b j _ d i s t && distance_R > o b j _ d i s t ) {
63 //forward motion
64 turn_motor (m1 , m2 , ’ F ’ ) ; // l e f t wheel : c lockwise
65 turn_motor (m3 , m4 , ’ F ’ ) ; // r i g h t wheel : c lockwise
66 S e r i a l . p r i n t l n ( " Bot moving forward " ) ;
67 }
68 e l s e i f ( dis tance_L > o b j _ d i s t && distance_R <= o b j _ d i s t ) {
69 // l e f t motion
70 turn_motor (m1 , m2 , ’ S ’ ) ; // l e f t wheel : stop
71 turn_motor (m3 , m4 , ’ F ’ ) ; // r i g h t wheel : c lockwise
72 S e r i a l . p r i n t l n ( " Bot moving l e f t " ) ;
73 }
74 e l s e i f ( dis tance_L <= o b j _ d i s t && distance_R > o b j _ d i s t ) {
75 // r i g h t motion
76 turn_motor (m1 , m2 , ’ F ’ ) ; // l e f t wheel : c lockwise
77 turn_motor (m3 , m4 , ’ S ’ ) ; // r i g h t wheel : stop
78 S e r i a l . p r i n t l n ( " Bot moving r i g h t " ) ;
79 }
80 e l s e i f ( dis tance_L <= o b j _ d i s t && distance_R <= o b j _ d i s t ) {
81 //by defaul t , r o t a t e l e f t
82 turn_motor (m1 , m2 , ’B ’ ) ; // l e f t wheel : ant i −clockwise
83 turn_motor (m3 , m4 , ’ F ’ ) ; // r i g h t wheel : c lockwise
84 S e r i a l . p r i n t l n ( " Bot r o t a t i n g l e f t " ) ;
85 delay ( 1 0 0 0 ) ; // l e t the bot r o t a t e a b i t ! !
86 }
87 delay ( 1 0 0 ) ;



actuator, robotics with arduino 67

88 }

Try out the same bot by controlling the speeds of wheels. Setup a
dummy cardboard maze puzzle and try to solve the puzzle using the
bot. You might need to make use of additional concepts to effectively
navigates through the edges of walls. You could also rebuild the object
avoider bot using single ultrasonic sensor and a servo motor. Put your
thoughts and imaginations to get new ideas and solve new challenges.

(a) Maze solver (b) Object Avoider

Figure 7.8: Different models and
usage of object avoider



8
Interfacing DTMF

Dual Tone Multi Frequncy (DTMF) is a common method used by phone
companies to conduct surveys and other requests. It is a telecommuni-
cation signaling system using the voice-frequency band over telephone
lines between telephone equipment and other communications devices
and switching centers. First developed at Bell Systems in United States
in 1963, it found its wide spread usage ever since.

Figure 8.1: A DTMF module

The keypad is given a fixed set of pure tone ( pure sine wave ) that
generates an audio of that particular frequency. This audio is analyzed
at the switching centers and telephone equipment and decoded back
to detect the key pressed. The keypad grid is divided into two groups
of audio frequency ranges, The Row (Low group) frequencies and
The Column (High group) frequencies. Whenever a key is pressed,
corresponding mixture of audio are generated and transmitted via
telephone line. Table 8.1 depicts how the frequency are distributed
between rows and column.



actuator, robotics with arduino 69

Column (High Group) frequencies

1209 Hz 1336 Hz 1477 Hz 1633 Hz

R
ow

(L
ow

G
ro

up
)

fr
eq

ue
nc

ie
s

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz # 0 # D

Table 8.1: Each key generates
unique combination of frequency

For example if the customer presses 8 , audio of frequency 2188Hz
(1336+852) is generated and transmitted via telephone line. At the
receiving center, they are passed through a decoder to generate the key
value 8.

8.1 Number systems - Binary and Decimal

In the digital world, number are represented in various forms. For
humans to read smoothly, we in our day to day life make use of Decimal
numbers. Decimal numbers have 10 possible digits, ranging from 0 to
9. All number are generated by placing these symbol in one’s, ten’s,
hundred’s places. Notice that the places are represented as powers
of 10. To remind that the number is in decimal system and not in
some other system, we write 10 as its subscript. Since decimal numbers
are the mostly used, its automatically assumed that the number is in
decimal form, if there are no subscript written. Table 8.2 depicts few
examples of decimal numbers.

Decimal pattern
Thousand’s place

103

Hundred’s place

102

Ten’s place

101

One’s place

100

(1598)10 1 5 9 8

(559)10 5 5 9

(48)10 4 8

710 7

Table 8.2: Decimal number sys-
tem



actuator, robotics with arduino 70

Consider a system that can accept N number of decimal digits
(places), it means that the system can have (base)N possible values i.e.,
10N possible values ranging from 0 to 10N − 1 numbers. Assume we
can accept any 4 digit decimal number. It means that there can be
104 = 10000 values ranging from 0 to 9999

Computers are digital systems where signal/states are represented by
0V or 5V. They have only 2 states possible. To execute any instruction,
they require an array of 2 states called “bi-nary”. Each state are called
as a bit. Bit zero represents 0V and bit one represents 5V. To work
upon decimal numbers, digital system needs to convert and represent
decimal number as its equivalent binary numbers.

Consider a 3 bit binary number. There can be total of 23 = 8 possible
values, ranging from 0 to 7 as shown in the table 8.3.

Binary pattern 22 21 20 Decimal equivalent

(000)2 0 0 0 0

(001)2 0 0 1 1

(010)2 0 1 0 2

(011)2 0 1 1 3

(100)2 1 0 0 4

(101)2 1 0 1 5

(110)2 1 1 0 6

(111)2 1 1 1 7

Table 8.3: A 3 bit binary to deci-
mal mapping

You might have heard of byte, kilo byte, megabyte etc. They denote
range of collection of bits to represent an information. If “int” is 4 bytes
long, it means it can have 4 ∗ 8 = 32bits = 4294967296 possible values.
See table 8.4

4 bit =1 nibble 24 = 16 combinations

8 bit = 1 byte 28 = 256 combinations

210 byte = 1 kilobyte 218 = 262144 combinations

210 kilobyte = 1 megabyte 228 = 268435456 combinations

210 megabyte = 1 gigabyte 238 = 274877906944 combinations
Table 8.4: Computer memory ca-
pacity



actuator, robotics with arduino 71

8.2 Converting Decimal to Binary

To convert a decimal number to its equivalent binary number, keep
dividing the number by 2 and append the remainders in reverse order
(bottom to top) as shown in figure 8.2.

Figure 8.2: Converting to binary

8.3 Converting Binary to Decimal

To convert binary number to its equivalent decimal number, keep
multiplying the binary digit with 2p , where p is digit position starts
from zero and then find its sum as depicted in table 8.5.

Position values 23 = 8 22 = 4 21 = 2 20 = 1 Decimal value

Binary pattern1 = (1011)2 1 0 1 1 1*23 + 0 ∗ 22 + 1*21 + 1*20 = 1110

Binary pattern2 = (110)2 1 1 0 1*22 + 1*21 + 0 ∗ 20 = 610

Table 8.5: Converting to decimal

8.4 MT8870 DTMF Decoder

DTMF decoder is a module the accepts the audio frequency and con-
verts them to the digital signals. The audio can be fetched from a
mobile phone via aux cable ( headphone set ) and connect it to the aux
jack of the module.

The board needs to be powered up via 5V pins and the decoded
output is received via pins Q1,Q2,Q3,Q4 in binary format. Table 8.6
shows the mapping of key pressed from binary to decimal value.



actuator, robotics with arduino 72

Figure 8.3: Various models of
DTMF decoder

Key pressed Audio frequency[Hz] Q4 Q3 Q2 Q1 Binary pattern Decimal equivalent

1 1906 0 0 0 1 1 1

2 2033 0 0 1 0 10 2

3 2174 0 0 1 1 11 3

4 1979 0 1 0 0 100 4

5 2106 0 1 0 1 101 5

6 2247 0 1 1 0 110 6

7 2061 0 1 1 1 111 7

8 2188 1 0 0 0 1000 8

9 2329 1 0 0 1 1001 9

0 2150 1 0 1 0 1010 10

∗ 2277 1 0 1 1 1011 11

# 2418 1 1 0 0 1100 12

A 1906 1 1 0 1 1101 13

B 2033 1 1 1 0 1110 14

C 2174 1 1 1 1 1111 15

D 1979 0 0 0 0 0 0

Table 8.6: Mapping DTMF inputs
to decimal values



actuator, robotics with arduino 73

8.5 Programming DTMF decoder

As shown in figure 8.4, the q1,q2,q3,q4 of DTMF is connected to 7,6,5,4
pins of Arduino respectively. The StD pin is connected to pin3, which
turns HIGH whenever the module receives a new frequency. The
module is powered via 5V line and is connected to a cell phone via aux
cable. The Phone acts as receiver/switch center. Lets write a code to
interpret the DTMF signals.

Figure 8.4: Circuit diagram for
interfacing DTMF with Arduino
Uno

1 i n t Q1=7 , Q2=6 , Q3=5 , Q4=4 , StD = 3 ; //pin a l l o c a t i o n s
2 i n t dec_number ;
3

4 void setup ( ) {
5 // s e t pins as input f o r Arduino .
6 pinMode (Q1 , INPUT) ; pinMode (Q2 , INPUT) ;
7 pinMode (Q3 , INPUT) ; pinMode (Q4 , INPUT) ;
8 pinMode ( StD , INPUT) ;
9

10 S e r i a l . begin ( 9 6 0 0 ) ;
11 }
12

13 void loop ( ) {
14 dec_number = 0 ;
15

16 i f ( d ig i ta lRead ( StD ) ==HIGH) { //rece ived new frequency
17

18 //convert ing binary s i g n a l s to decimal number
19 //using b i t manipulation in C
20 dec_number |= dig i ta lRead (Q1 ) <<0 ; //2^0 p o s i t i o n
21 dec_number |= dig i ta lRead (Q2 ) <<1 ; //2^1 p o s i t i o n
22 dec_number |= dig i ta lRead (Q3 ) <<2 ; //2^2 p o s i t i o n
23 dec_number |= dig i ta lRead (Q4 ) <<3 ; //2^3 p o s i t i o n
24 S e r i a l . p r i n t ( " The code i s " ) ;
25 S e r i a l . p r i n t l n ( dec_number ) ;
26 }
27 }



actuator, robotics with arduino 74

Now make a call to the receiver phone “A” from another phone
“B”. Make key presses in the phone B so that corresponding audio is
heard at the phone A. Observe the Serial monitor for the output. It
might happen that you cannot observe proper detection in the Serial
monitor. This can be due to various factor like different audio jack
material, internal phone circuitry, phone model and version etc. Try
with some other phones. Have you ever noticed that whenever we press
the button on earphone mic, it behaves differently in different phones?

Can you reconfigure the system to control a bot? Go through the
section 5.2 to get an idea to integrate the bot with DTMF. Your wireless
bot is ready for action.

Figure 8.5: Wireless bot using
DTMF



Conclusion

Robotics is indeed a vast field that experience rapid advancements every day. It finds its usages ranging
from home appliances to commercial factories. Technology have made possible for a large population of
enthusiasts to test and build new ideas to uplift human lifestyle. Introducing Arduino and its working can
stand as foundational steps into robotics. IoT and embedded project contributes heavily to automation of
various facilities. A wide range of projects can be found at Hackster https://www.hackster.io/ that make
use of basic units to build amazing ideas. Higher to Arduino, Raspberry Pi scores the most when it comes to
higher IoT and other projects. Image processing, Voice controller applications, surveillance, automation etc
demands Open Source platforms like raspberry pi. Other software’s and advancements keeps on progressing
as we speak! As the technology improves, there will be new ways to use robots which will bring new hopes
and new potentials.

https://www.hackster.io/

	The ROBOCEK Family
	Vision
	Mission
	Values
	Down the Memory Lane
	ROBOCEK Execom
	Reach out to us

	Introduction to Robotics
	What is Robotics?
	Evolution of Robotics

	Introduction to Arduino
	Comparing Arduino to its alternatives
	Micro-controllers and Micro-processors
	Arduino Boards
	Arduino Uno R3
	Pin Layout
	Methods to power up Arduino
	Digital Pins
	Analog Pins
	PWM

	Programming Arduino with C
	Programming the voltages
	Arduino IDE
	Programming language for Arduino
	Basic concepts of C language
	Example Programs

	Motor Driver
	L289N motor driver
	Interfacing DC motor - motor driver - Arduino
	Speed controlled Bot

	Interfacing IR sensors
	Types of IR sensors
	Active IR Sensors
	IR sensor boards
	Detailing IR sensor FC-51
	Code example 1
	Code example 2
	Line Follower bot
	Tracing line - Line follower

	Interfacing UltraSonic sensors
	Ultrasonic sensor
	Detailing HC-SR04 ultrasonic sensor
	Pins on HC-SR04
	Working of HC-SR04 sensor
	Calculation of the distance
	Code example 1
	Object avoider-bot

	Interfacing DTMF
	Number systems - Binary and Decimal
	Converting Decimal to Binary
	Converting Binary to Decimal
	MT8870 DTMF Decoder
	Programming DTMF decoder


